Beyond the Finite

Sometimes sets don't have bounds. To fix this, we extend the real number system by adding two new symbols: \( +\infty \) and \( -\infty \). The Extended Real Number System is denoted as \( \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} \).

Warning: \( \pm\infty \) are NOT real numbers. You cannot do standard arithmetic with them (e.g., \( \infty - \infty \) is undefined). They are primarily used for ordering and describing unbounded sets.

Interactive: The Extended Line

Select a set to see its supremum and infimum in the extended system. Notice how unbounded sets now have a defined sup/inf!

Supremum
-
Infimum
-

Arithmetic with Infinity

Allowed Operations

  • \( a + \infty = \infty \) (for \( a \neq -\infty \))
  • \( a - \infty = -\infty \) (for \( a \neq \infty \))
  • \( a \cdot \infty = \infty \) (if \( a \gt 0 \))
  • \( a \cdot \infty = -\infty \) (if \( a \lt 0 \))
  • \( \frac{a}{\infty} = 0 \) (for \( a \in \mathbb{R} \))

Undefined Operations

  • \( \infty - \infty \)
  • \( 0 \cdot \infty \)
  • \( \frac{\infty}{\infty} \)
  • \( \frac{a}{0} \) (still undefined)

Practice Problems

True/False

1. The symbol \( +\infty \) is a real number.

2. For any non-empty set \( S \subseteq \mathbb{R} \), \( \sup S \) always exists in the extended real number system.

3. If \( \sup S = +\infty \), then the set \( S \) has a maximum element.

4. The expression \( +\infty + (-\infty) \) is defined and equals 0.

Fill in the Blank

1. The extended real number system is denoted by \( \overline{\mathbb{R}} = \mathbb{R} \cup \{ \_\_\_\_\_ \} \).

2. If a set \( S \) is not bounded above, then \( \sup S = \_\_\_\_\_ \).

3. The interval \( (-\infty, 5] \) represents the set \( \{x \in \mathbb{R} : x \_\_\_\_\_ 5\} \).

4. If \( A = [1, \infty) \) and \( B = [2, \infty) \), then \( \sup(A+B) = \_\_\_\_\_ \).

Full Problems

1. Let \( S = \{x \in \mathbb{R} : x^2 \gt 4\} \). Find \( \sup S \) and \( \inf S \) in the extended real number system.

2. Let \( A = \{n^2 : n \in \mathbb{N}\} \). Find \( \sup A \) and \( \inf A \).

3. Let \( C = \{x \in \mathbb{Q} : x \lt 0\} \). Find \( \sup C \) and \( \inf C \).

4. Consider the set \( D = \mathbb{Z} \). Find \( \sup D \) and \( \inf D \).

5. Let \( E = \{x \in \mathbb{R} : x^3 \lt 8\} \). Find \( \sup E \) and \( \inf E \).